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Abstract—We introduce a set of integrated interaction techniques to interpret and interrogate dimensionality-reduced data. Projection
techniques generally aim to make a high-dimensional information space visible in form of a planar layout. However, the meaning of
the resulting data projections can be hard to grasp. It is seldom clear why elements are placed far apart or close together and
the inevitable approximation errors of any projection technique are not exposed to the viewer. Previous research on dimensionality
reduction focuses on the efficient generation of data projections, interactive customisation of the model, and comparison of different
projection techniques. There has been only little research on how the visualization resulting from data projection is interacted with.
We contribute the concept of probing as an integrated approach to interpreting the meaning and quality of visualizations and propose
a set of interactive methods to examine dimensionality-reduced data as well as the projection itself. The methods let viewers
see approximation errors, question the positioning of elements, compare them to each other, and visualize the influence of data
dimensions on the projection space. We created a web-based system implementing these methods, and report on findings from an
evaluation with data analysts using the prototype to examine multidimensional datasets.

Index Terms—Information visualization, interactivity, dimensionality reduction, multidimensional scaling.

1 INTRODUCTION

A primary goal of information visualization is to find patterns and
relationships in multivariate datasets. Many visualization techniques
have been developed towards this goal such as multiple coordinated
views [2], parallel coordinates [14], scatterplot matrices [28], and
dimensionality reductions such as multidimensional scaling (MDS)
and principal component analysis (PCA) [5]. Dimensionality re-
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ductions are a particular class of techniques that synthesise high-
dimensional data spaces onto projection spaces with much fewer
dimensions, typically the two dimensions of the plane. While most
visualization techniques juxtapose the different data dimensions as
matrices or columns, dimensionality reductions integrate them into a
planar canvas. The projection results in a so-called spatialisation (i.e.,
embedding) of data elements that approximately represents similarity
as proximity and in turn dissimilarity as distance. Considering that
the human perceptional system comprises a well-developed capacity
for spatial reasoning, the assumption is that spatialisation would
be a more natural way [31] to analyse high-dimensional datasets
since groupings, separations, and other patterns among data elements
become immediately discernible.

However, there are two major caveats linked with dimensionality
reduction: first, it can be challenging to interpret the positions of
projected elements, and second, the errors that occur with any pro-



jection are seldom exposed to the viewer. In contrast to the mapping
of a standard scatterplot, which can be traced back to the particular
dimensions of a given dataset, the axes and positions of projections
are the result of a complex algorithm whose iterative mechanism is
highly opaque. Especially data analysts who have limited experience
with dimensionality reduction have difficulty interpreting the meaning
of the projection’s axes and element positions [21]. While experts
in data analysis and machine learning may understand the underlying
principles and tend to agree on what constitutes a good projection [18],
the specific process of using dimensionality reductions as part of
analysis tasks remains very much a black box.

Intricately linked to the projection process is the inherent occur-
rence of errors. The relative distances among the projected data
elements in the plane can only approximate their distances in high-
dimensional space; projection techniques can accumulate significant
errors. While there has been substantial research on optimising
projection algorithms to increase computation speed and projection
accuracy, approximation errors cannot be eradicated, they are built into
the method. For example, when using multidimensional scaling, the
magnitude of projection errors is typically represented in a single value
called ‘stress’ [16], which is unlikely to be understood by novices
as it is hard to relate to the positioning resulting from a projection.
The lack of transparency can make it difficult to confidently analyse
a given dataset and critically examine the quality of a projection.
Additionally, stress values can be calculated for each point. There has
already been some work on visualizing the distribution of distortions
across projections [1, 23], however, the resulting visualizations tend
to overpower the projection, do not provide point-specific corrections,
and lack the support for crucial tasks: analysing point clusters and
mapping dimensions [4]. There is a need for visualization environ-
ments that help the viewer in both analysing dimensionality-reduced
data and assessing the quality of their visual representation.

With this research, we contribute the concept of probing as an
integrated approach to interpreting the meaning and quality of data
visualizations, especially those relying on dimensionality reduction.
Probing aims to integrate the interrogation of the projection with
the interpretation of the data and treat these as two necessarily
linked activities. Towards this goal we designed a suit of interactive
visualization techniques that are specifically designed to support the
analysis of high-dimensional data using multidimensional scaling, as
well as examination of projection errors resulting from this technique.
We report on the implementation of a web-based visualization system
and discuss the results from two brief studies with data analysts.

2 RELATED WORK

While not strictly a visualization technique, dimensionality reduction
has been utilised in various subareas of visualization, for example
to lay out network nodes based on their attribute similarity [7] and
collections of documents based on their content [31].

Because of its high computational complexity, considerable work
on dimensionality reduction has focused on the optimisation of pro-
jection techniques, for example, by utilising the graphics card [13] or
guiding the algorithm towards regions of interest [30]. In light of both
their computational and technical complexity, tools have been devel-
oped that support workflows around dimensionality reductions [12].
However, an open problem is that people using dimensionality reduc-
tions may not understand their inner working.

There have been some efforts in evaluating the different visu-
alization techniques for representing dimensionality-reduced data.
Two recent studies have shown that 2-dimensional scatterplots, i.e.
dot maps, outperform 3-dimensional visualizations [27] as well as
scatterplot matrices [22]. The authors suggest that depending on the
structure and clustering of the data, several dimensionality-reduction
techniques should be compared. However, a recent study on projection
evaluation suggests that data analysts still unfamiliar with dimension-
ality reduction have difficulty providing reliable evaluations [18].

To better understand the needs for visualization design, there is
a growing interest in the different ways dimensionality reduction is
being used in the field. A two-year qualitative study of data analysts

who use dimensionality reduction led to a characterisation of two main
types of task sequences: first, analysts tended to verify the explicit
and implicit clusters, and second, they sought the mapping between
original and synthetic data dimensions [4]. The same study has also
shown that the participating analysts who had a limited understanding
of dimensionality reduction tended to lack the mental model for the
underlying mechanism to trust the quality of a projection [21]. This
lack of trust may actually turn away viewers from global projections
towards more local arrangements that may be clearer to interpret [6].

This may be in part due the fact that errors are seldom displayed as
part of the projection but rather as a global stress metric. It has already
been demonstrated how to visualize distortions of an embedding, for
example by using a voronoi tessellation around the data points [1, 17].
Such meta visualizations clearly indicate the areas of compression
and stretching, which is ideal for a critical assessment of a given
projection. Similarly, the global stress of a projection can be broken
down to local stress measures which can be integrated with a regular
projection [23]. However, the problem with error visualizations is
that they tend to prioritise the examination of projection quality at
the expense of analysing the characteristics of the underlying data.
It is also possible to interactively inspect specific neighbourhoods
in a projection to see tears and false neighbourhoods (i.e., areas of
stretching and compression) [10]. While this technique is designed
for exploration of local distortions, it may be beneficial to consider
the potential of interaction more broadly as a way to examine the
projection as well as the projected data.

A range of interaction techniques have already been proposed for
the visual analysis of dimensionality-reduced data. In fact, especially
for the purpose of coping with uncertainties of MDS, interaction
techniques for animation, prioritising, and focusing the algorithm [5].
The viewer could prioritise the dimensions to reduce distortions in the
important structures [15] weight the underlying model by moving data
elements in the projection as a form of feedback [8]. A related idea
is to allow the viewer to ‘craft’ projection functions according to their
interest [9]. While these interactive approaches to customising projec-
tions are very promising, they assume a certain understanding of either
the dataset or its dimensions. However, as aforementioned studies
indicate, a recurring task for data analysts is actually understanding
the dimensions in the first place [4, 21].

Existing visualization techniques for dimensionality-reduced data
tend to either emphasise the exploration of clusters and dimensions
or the examination of projection distortions. Considering the poor
confidence in dimensionality reductions, there is a need to help
analysts make better sense of data arrangements and projection errors.

3 PROBING PROJECTIONS

We introduce the notion of probing as a general interaction approach
to information visualization that is aimed at both exploring the data
as well as examining its representation. The goal is to couple these
activities to build confidence in using and judging sophisticated visu-
alization techniques such as those relying on dimensionality reduction.

Dimensionality-reduced data is typically visualized as a scatterplot,
with the distances between points approximating the dissimilarities of
the samples. Unlike regular scatterplots, the axes of projections have
no apparent meaning, which can make them hard to grasp. As the
underlying data is not directly shown in the presentation of the dataset,
it can be challenging to explore why certain samples are placed where
they are and why certain points are far or close from each other. The
challenge of making sense of the positioning is further exacerbated
due to approximation errors that make it unclear whether the distances
are truthful in the first place.

Before these visualizations can be explored to analyse the data,
they have to be examined to assess their quality and build trust in
them. We propose to integrate these two steps, building on previous
empirical research on dimensionality reductions in use [4, 18, 21] and
visualization techniques for exposing their distortions [1, 10, 23].

Examining the projection Any visualization is a reduced repre-
sentation of the underlying data. To confidently use the visualization
for exploring the underlying data, the viewer needs to be able to



develop trust in the representation [6]. For common representations
such as bar charts this trust may have built up by frequent use, but
for specialised techniques such as dimensionality reductions, novice
viewers need particular support to judge how reliable the positioning
is and how the visualization relates to the ‘original’ data. In the
context of dimensionality-reduced data, the trust in the fidelity of the
projection is usually established by looking at the total error (stress)
of the projection, the distribution of errors across the projection [1],
or at the relationship between dissimilarities and distances, usually in
a Shepard diagram [3]. However, these methods show information
about the projection, but not as a part of the interaction with the
projection; the visualization of errors is typically disconnected from
the data exploration. The idea behind probing is to embed the
examination of errors into the interaction with the projection itself, for
example, by revealing which elements exhibit the biggest error, and
interactively considering locally corrected representations for them.

Exploring the data As the projection visually conveys the simi-
larity of the samples, the main questions when analysing the samples
revolve around understanding why they are similar, and why they
are not. Analysts ask these questions again and again on different
scales and during different tasks, making it important to be able to
easily analyse and compare data elements and groups. Visualising the
impact of dimensions on the projection space is important as well.
Without traditional axes, it can be hard to come to an understanding
of the spatial relationships between elements or clusters. The dynamic
integration of additional visualisations representing dimensional dis-
tribution could aid the understanding of the projection space.

The combination of these principles together with an understanding
of how projections are used [4] informed the following design goals
for the interactive visualization of dimensionality-reduced data:

• Show and correct approximation errors. The user should be
aware of distortions in the projection, as well as be able to view
the true high-dimensional distances and compare them to the
approximated distances to allow for a more careful reading and
interpretation of it.

• Allow for multi-level comparisons. Comparing elements and
groups of elements needs to be easy. At a glance, the viewer
should be able to see the aspects different elements have in
common, and what sets them apart. The comparison should
also adapt to what is being compared; comparing a sample to
the dataset is different form comparing two clusters.

• Spatial orientation. Without clearly labelled axes, there needs
to be another way of finding correlations between dimensions, or
visually matching clusters to dimensional values. Furthermore, it
may help to expose the dimensional distribution across the space.

• Consistent design. The visual appearance and interaction
techniques of the analysis environment should be carefully
integrated so that error and data visualization do not impede the
understanding of the respective other.

4 DESIGN TOWARDS PROBING

To explore the concept of probing, we have designed and implemented
a web-based visualization environment.1 The interface is subdivided
into two main areas: a large projection area and a sidebar, which
features a range of visualization controls allowing dynamic selections,
clustering, and dimensions, (see Figure 1). These components are
interactive, and they support brushing and linking to support the
analysis of the project and data from different perspectives.

The projection shows the output of the dimensionality-reduction
algorithm. (For the prototype, we decided to use MDS, as it exhibits
many of the problems we were dealing with, such as projection errors
and no meaningful axes, and we were familiar with it.) Information
about projection errors is easily available for the general projection
as well as for specific points. Points are displayed as dots whose
visual appearance can be changed to convey additional information
such as class membership or values for specific dimensions. A

1http://julianstahnke.com/probing-projections/

Fig. 1. Overview of the main interface components: projection on the left
and sidebar with controls for the projection, groupings, and dimensions.

dendrogram can be overlaid onto the projection to aid understanding
of the clustering hierarchy. The distributions of variable values for
dimensions are shown as small embedded visualizations in the sidebar
and are also available as heatmaps. Individual or multiple points can
be selected, and their values inspected and compared.

The sidebar displays visual controls for and additional information
about the projection, user-defined classes and clusters, and a list
of the dataset’s dimensions. Akin to scented widgets [29], the
controls feature small dynamic visualizations that guide the viewer’s
interaction with various aspects of the dataset and projection. The
views are coordinated allowing for cross-dimensional exploration.

4.1 Visual appearance
The visual design of the interface aims to emphasise the data, with con-
trols staying in the background as much as possible, while remaining
subdued in contrast to data points and clusters. This is accomplished
by a restrained use of colour and shape.

The interface uses shades of grey to distinguish between elements.
Colour is reserved to display the results of user interaction (pre-defined
classes and user selections), separating them from elements generated
by algorithms. In a wider sense, this can be thought of as a deliberate
encoding of potential findings with colour.

The projection, the most important element, is placed on a bright
rectangle, visually emphasising it, and separating it from the rest of the
interface. The projection and its small counterparts in the sidebar are
the only square boxes in the interface, aiming to make it recognisable
at any size. All remaining corners are slightly rounded, and the
rectangles filled instead of outlined, to make them more visually
compact, emphasising the contents of the box, instead of the box itself.

Care was taken to visually separate additional overlays such as error
representation and dimension distribution from the actual samples.
Sample properties are always displayed via the dots in the projection,
while approximation errors and heatmaps are additive and do not
change the appearance of the dots.

Sections in the sidebar and in tooltips are separated by thin lines
instead of putting them in boxes, to de-emphasise them compared to
the projection. Buttons and other interface elements are lighter than
their background and have slight drop shadows, visually separating
them from content, which is generally darker than its background.

4.2 Grouping samples
When working with multidimensional data it is important to be able to
create, compare, and name clusters or groups of samples. The probing
interface supports three main ways of grouping samples:

• Selections. By dragging the mouse around a group of points on
the projection or shift-clicking them selections of points can be
selected that can then be saved and named.

• Classes. If the dataset contains classes, they are displayed in the
sidebar under their own heading.

• Clusters. Using an agglomerative clustering algorithm with
a Ward linkage criterion in the high-dimensional space, one
can interactively generate varying numbers of clusters. While
dragging the slider, the clusters are previewed by colouring the

http://julianstahnke.com/probing-projections/


Fig. 2. A tooltip displays the sample’s absolute values, standard
deviations, and graphical representations for each dimension.

dots on the projection and drawing a convex hull around them.
Clusters can also be saved and named as selections.

All of these groupings are displayed as panels in the sidebar. Each
selection, cluster, or class is displayed with a thumbnail of its spatial
distribution, providing a quick visual way of locating the relevant
points in the projection. Some additional information, such as the
name or the number of samples, is displayed below the thumbnail.
Furthermore, hovering over a grouping’s thumbnail displays small
density plots in the list of dimensions, as well as a text-based preview
of the most deviating dimensions per group.

On the projection, these groupings are coded by colour, with the
user being able to switch between displaying classes, selections, or
clusters using the respective eye icon.

4.3 Comparing elements
Elements can be analysed by viewing their values and comparing them
to the dataset in general, or to other selections in particular. Even
a single sample is never analysed in isolation; its values only make
sense when compared to the rest of the dataset (see Figure 2).

Analysing a single sample is done by hovering the mouse pointer
over a dot on the projection. The values for the corresponding sample
are indicated in the list of dimensions. Additionally, a tooltip appears,
showing the values for the various dimensions, and their standard
deviations. They are displayed in text form for accuracy, as well as
in a graphical representation for quick comprehension. The deviations
from the mean are displayed as bar charts, with density plots of the
whole dataset in the background to provide additional context. The
colours of the bars reflect the deviation as well, either in red or blue,
and with increasing saturation for higher deviations. If there are too
many dimensions to display at once, only the dimensions are shown,
in which the sample deviates most. An individual sample can also
be compared to other samples by selecting it and hovering over other
samples. A tooltip will appear and visualise the differences.

Analysing groups works similarly. When selecting a group of
samples, density plots for them are shown in the list of dimensions,
comparing the selection to the dataset. A tooltip comparison is
displayed as well. Because there is no single value for the dimensions,
the means are used instead. The graphical representation also takes
this into account, showing a density plot instead of a bar. As shown
in Figure 3, groupings can also be compared to each other, displaying
density plots for each of them. The methods for comparing samples
and groups work together, making it possible to compare a sample to
multiple clusters to e.g. find out which of them it should belong to.

4.4 Analysing dimensions
It is important to be able to quickly reference original dimensions
when analysing a dimensionality-reduced projection. Two things
matter in this regard: the spatial distribution of values in the projection
to account for clustering of the data, and the distribution of values in
the dimension itself to see how elements compare to other elements

Fig. 3. After selecting one group of samples, hovering over another
group shows a tooltip that compares these groups (here selections).

within an individual dimension. For this purpose the interface features
dynamic heatmaps in the projection and density plots in the sidebar.

4.4.1 Heatmaps

Projections created with most dimensionality-reduction techniques,
such as MDS, have no meaningful axes, complicating spatial orien-
tation because dimensional values are distributed nonlinearly. Yet, in
order to assign meaning to clustering and find correlations between
dimensions, it is important to know how those values correspond with
the positioning of the dots. (For some techniques, such as PCA,
the contribution of each original dimension can be mapped to the
projected dimensions. It would then be possible to display this as a
biplot, creating meaningful axes.)

One solution is to use a glyph plot, with the dots themselves being
used to represent an additional dimension, for example by varying
their size according to the values. This technique is available in the
prototype and can be used to visualise a dimension spatially. Where
dot size can only show the value distribution for the actual samples,
the projection space can also be used to answer a more theoretical
question: what values would a fictive sample have to have to be
projected to a certain spot? Or, phrased differently: what are the
interpolated values for the projection space? We used a heatmap to
try to answer this question.

Fig. 4. Hovering over a dimension in the sidebar displays its distribution
as a heatmap in the projection on the left.

The heatmap is a grid of cells each representing the value for a
certain dimension at its position, with higher values being darker.
Brightness is used to avoid confusion with the group colours. This
allows to visually assess the value distribution for a given dimension,
with smooth transitions between zones. All heatmaps are also shown
as thumbnails in the list of dimensions, and on the projection itself



Fig. 5. Comparing an individual sample with a class from the well-known Iris flower data set. In addition to the distribution of dimensions of the
class and the value of the sample, the visualization also indicates sample-centric distortions using grey and white halos.

when hovering a dimension in the list (see Figure 4). This allows both
for an overview to spot dimensions with interesting patterns, and for a
more detailed view together with the dots.

The grid is constructed by dividing up the projection space into a
number of cells, with their size based on the mean of distances for
the closest three points from each point. A minimum value is used to
prevent the grid from getting too small to be useful, and calculations
taking too long.

The values for each grid cell are calculated by averaging the values
of the points in the cell, or, if there are none, the three closest points
for the cell, weighting them according to their distances from the cell.
This ensures smooth transitions over large gaps in the projection space,
while being responsive to abrupt changes at the same time.

4.4.2 Density plots

While the heatmaps show how the values are spatially distributed in
the projection space, kernel density plots in the list of dimensions
show their value distributions. In the prototype, currently the plots
are generated roughly equivalent to R’s bw.nrd0 function which uses
Silverman’s ‘rule of thumb’ [24, p. 48]. Percentiles are indicated on
the density plots to support the visual assessment. Used together with
brushing and linking, it is possible to assess how a sample, or a group
of samples, relates to the whole dataset.

Markers or sub-plots for selected elements are shown on the density
plots in the list of dimensions, providing dynamic highlights of sam-
ples being examined (see Figure 5, lower right). Additional markers
display the dimensional values mouse position in the projection space,
based on the calculations done for the heatmap, making it possible to
gradually track value progressions for multiple dimensions.

4.5 Examining projection errors

Besides exploring the distribution of samples and dimensions, the
visualization environment allows for the integrated examination of
projection errors by providing per-sample halos, distance corrections,
and a dendrogram.

4.5.1 Error halos
The cumulative distance error for each point is displayed as a halo
around the dot, with the radius corresponding to the relative amount of
error and the value indicating the direction of the error (see Figure 6).
This is intended to help the user visually understand the quality of
the projection and find potentially unreliable spots. Hovering over a
dot shows the errors in relation to the hovered point, to check if the
distances between certain points are correct or just projection artefacts,
and learn which points should be closer together or further apart.

Halos were chosen because their visual properties are a good match
for the properties of the error they represent. The error does not belong
to the sample, but to the projection, and as such should be displayed
by the projection. A halo is clearly connected to the dot, but also part
of the projection. Size was chosen as a very intuitive metric to display
the amount of error, with points with a large error standing out easily.

The brightness of the halo displays the direction of the error. If
the other points are farther away in the projection than in the high-
dimensional space, the halo is white; if they are too close in the
projection, the halo is dark. White was chosen for points that should
be nearer because it stands out more, and while using the prototype
ourselves, we often ended up looking for ‘similar’ samples.

Size and brightness were chosen over colour or shape, as using
colour would have clashed with the colouring of the dots, and different
shapes were not as glanceable as changes in brightness.

4.5.2 Distance correction
After examining the approximation errors, the viewer might decide
that the errors of a certain point warrant more attention. They can then
visualize them by selecting to view the high-dimensional distances
between the selected point and all others. This removes all projection
errors when it comes to distance, but for the selected sample only.

The new, corrected positions for each point are calculated by taking
the vector between the selected and the other point and multiplying it
by the distance error ratio between the two. The angle between them is
kept as is. As a result, the other point moves directly towards or away
from the specified point, correcting the distance.



Fig. 6. Halos represent the cumulative error for the respective samples.
White indicates that a majority of samples is more similar than indicated
by their distance to the given sample; grey indicates the opposite.

The paths travelled by the points are shown as lines, leading from
the points’ original positions in the projection to the new, corrected
positions (see Figure 8). This connects them to their original positions
in the projection, and displays the size of the distance error at the same
time. Resembling the brightness encoding of the halos, the brightness
of the lines indicates whether they’ve moved closer or farther away.

A problem with this solution is that it introduces new distortions in
the spatial relationship between all other points. Only the distances
directly between the selected point and the other points are reliable,
whereas all the other distances are distorted, and the new positioning
might lead to wrong assumptions about potential clusterings. To
mitigate this problem, the correction paths are shown.

Another solution would be to recompute the projection while
preserving the distances from and to the selected point and being
more generous with distance errors among the remaining points. This
would somewhat reduce the introduced distortions. However, in
a recomputed projection, the positions of the points might change
significantly, most likely leading to completely different positions for
all points, possibly confusing the observer even if an animation is used.

Fig. 7. Dendrograms mapped onto the projection. Left: projection with
low projection error. Right: high projection error.

4.5.3 Dendrogram
In addition to the visualization of errors and corrections, a dendrogram
can visualize the samples with regard to their position in the clus-
tering hierarchy. Such a dendrogram (using the same agglomerative
algorithm as the clusters) overlaid onto the projection may also help

Fig. 8. Projection errors are corrected for the selected sample in orange;
grey traces indicate that samples are more different in high-dimensional
space, while white traces indicate a higher level of similarity.

to visualise high-dimensional distances on the projection space [25].
It graphically emphasises clusters by connecting close dots through
dense lines. Interestingly, the dendrogram is a surprisingly good
indicator of goodness of fit: if many thick, long lines intersect, it is
likely that the projection is of low quality.

5 EXAMPLE: OECD COUNTRIES

To illustrate the functionality of the interface we visualize the dataset
of OECD countries in the prototype (see Figure 9). The dataset
contains 8 dimensions for 36 countries2. First, the viewer is drawn
to the projection and notices Turkey that seems to be a clear outlier,
far away from all other countries. To explore why this is, the viewer
can examine this sample by hovering over it. A tooltip relating Turkey
to the rest of the dataset appears, showing that it deviates strongly from
the mean in nearly every dimension. This indicates the positioning as
outlier is probably correct.

To test this assumption and build up trust in the visualization,
the viewer selects ‘correct distances’, showing the high-dimensional
distances between Turkey and the other countries. This reveals that
Turkey should be even farther apart from several of the other countries.
Having confirmed that Turkey is an outlier in this dataset, the viewer
uses the built-in clustering to get a sense of how the countries are
grouped. Playing around with the number of clusters, they notice
that there seem to be seven clusters roughly corresponding to the
geographical and geopolitical placement of the countries.

Taking a closer look at the positioning of the clustered countries,
they realise that the arrangement seems to roughly correspond to
geographic directions: Northern and Southern countries are roughly
distributed along the vertical axes, East and West along the horizontal.
To find out if or how this correlates with the dimensions, the viewer
first compares the different clusters. Here the differences along the
dimensions are very much pronounced. Interestingly though, life
expectancy is lower in Latin America than Asia, while the self-
reported health is higher for the former than the latter.

After a few more comparisons between the clusters, the viewer
becomes interested in the dimension life satisfaction and turns towards
the heatmaps. They notice that the values for life satisfaction and self-
reported health seem to be higher in the Western countries, whereas the
value for employees working very long hours seems to be especially
high in the countries of the far East and the South.

2http://www.oecdbetterlifeindex.org/
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Fig. 9. Probing the OECD dataset: (a) analysing Turkey as an outlier at the bottom of the projection, and (b) its corrected distances, (c) comparing
two diametrically positioned clusters, and (d) using heatmaps to relate the dimension ‘Life satisfaction’ to the projection plane.

6 EVALUATION

To examine the potential of probing and get a first sense of how the
prototype would be used, we carried out an evaluation in two phases.
First, we conducted a brief user study of the web-based visualization
tool to assess the general viability of the concept of probing and
identify specific opportunities for refinement of the prototype; second,
we ran a more focused study to better understand how people would
use the different probing functions during the analysis.

6.1 Setup

Both studies consisted of three parts: pre-study interview, a set of
predefined tasks to be carried out with the prototype preloaded with
a given dataset, and a post-study interview. In the first study, the
visualized dataset was about 36 countries and eight socio-economic
dimensions, and the second study featured a whisky dataset consisting
of 12 dimensions related to taste and smell for 86 brands. While the
country dataset builds on participants’ prior knowledge, the whisky
dataset was entirely novel to all participants. The studies were con-
ducted in a user-experience research lab at a university. The language
used was German, with all participants as well as the moderator
being native speakers. Video and audio recordings were made of the
participants as well as the screen; eye tracking was employed during
the first study. The study moderator was not involved in the design
process of the prototype.

6.1.1 Participants

We carried out the evaluation with ten participants (aged 26-47, 9
male, one female), six taking part in the first study and four in
the second study. Participants were recruited from the university
campus and nearby research institutions with the criterion of having
experience with data analysis. Short interviews were conducted before
the studies to estimate the level of expertise: all participants indeed had
experience with data analysis and/or information visualization. In the
first study, four were at least somewhat familiar with the concept of

MDS and three were using it at least sometimes. In the second study,
participants were considerably less familiar with MDS. To introduce
the concepts behind MDS and the functionality of the prototype to
participants, a brief explanation was given verbally by the moderator
(study 1) or as a brief video (study 2).

6.1.2 Tasks and procedure

After being set up at the test computer, a brief explanation of the
dataset was provided by the moderator, and the participants were able
to freely explore the prototype for two minutes. The exploration phase
was intended for the participants to familiarise themselves with the
interface, as well as to provide insight into which elements elicit the
most attention. During the first study participants were asked to think
aloud while using the prototype, providing insight into expectations
and suggesting possible issues with the interface.

For the main part of each study, we respectively developed a set
of tasks the participants were asked to complete (see Tables 1 and
2. The tasks of the first study were ordered so that each task built
on the previous task and become increasingly more complex as the
participants became more familiar with the prototype and the data.
During the second study the tasks were carried out independently
from each other; here we paid particular attention to the interaction
sequences for each question. Both the moderator and an observer were
noting markers for each main function of the prototype.

After the tasks of the first study, we conducted a follow-up in-
terview, in which we used the retrospective think-aloud method and
asked a semi-structured set of questions, requesting their opinion of
the prototype and suggestions for improvement. They were also
asked to grade the prototype along four general terms. During the
closing interview of the second study, participants were asked to
evaluate specifically the different functions of the prototype and the
more general potential of probing. The average session length of
both studies, including pre- and post-interviews, lasted for about 60
minutes. The tasks themselves took about 35-45 minutes.



Table 1. Tasks of the study 1 and their completion rates (C: Completed,
H: With help, and N: Not completed).

# Task C H N
1. You want to find out which data points about

Turkey are most interesting. Why is it so far
out from other countries?

6 0 0

2. Now you want to compare Turkey to other
countries. What are the differences?

5 1 0

3. There may be approximation errors in projec-
tions. How can you display them?

4 2 0

4. After completing the previous tasks, you
want to know if the positioning of Turkey is
correct.

4 2 0

5. How would you go about clustering the data? 6 0 0
6. After clustering the data, you want to find out

about the differences between two clusters.
5 1 0

7. How do you interpret the positioning of coun-
tries in this projection with regards to the
dimensions?

2 4 0

8. Can you discover correlating dimensions, or
synthesise new dimensions?

1 3 2

6.2 Findings: Study 1

The first two tasks of the first study were completed quickly and by
all participants. The error-reading and correction tasks (3-4) were
problematic for participants unfamiliar with dimensionality reduction,
and some participants had to receive help from the moderator. The
clustering tasks (5-6) were completed almost without problems. The
dimension-related tasks (7-8) were more challenging, with two partic-
ipants not completing the last task even when helped by the moderator.

6.2.1 Observations

The eye tracking data reflected the general layout of the prototype,
with clear hot spots around the middle of the projection and the list
of dimensions. The tooltip received considerable attention during
comparisons of elements, but participants often turned their gaze to
the list of dimensions in the sidebar to compare the values of elements
across dimensions. Some negatively remarked that the tooltips are not
as useful as they could be, because they overlapped the projection area.

Reading the approximation errors was problematic to some partici-
pants, especially those without previous knowledge of dimensionality
reduction techniques. Participants recognised the different white/grey
colouring of the halos, but were first unsure about the meaning,
looking for a legend or an explanation. Some participants thought
white indicated higher errors than grey. After entering the distance
correction mode, when they saw the differently coloured paths leading
to and from the original positions, they were able to make sense of
the colouring. Most participants were also confused by the fact that
the error display was context-sensitive; changing to show errors in
regards to hovered points: “There’s a difference in the meaning, there
seems to be a general white and a country-related white?” (P4).
Generally, the participants appreciated being able to view the errors,
with one participant even suggesting “a list of the samples with the
worst distance errors between them” (P3). Another participant asked
why the halos were round, expecting them to be shaped to express the
directions of the errors in terms of the projection’s coordinate system.

The eye tracking data showed that participants used both heatmaps
and density plots to verify clusters. The dimensional heatmaps and
their thumbnails were used to find correlations between dimensions
as well, even though participants had trouble interpreting their exact
meaning: “The visualization of the heatmaps is difficult to read. What
is dark and what is light? There is no legend.” (P3). The density plots
were understood by all participants, but found to be confusing when
too many overlapping sub plots were shown.

6.2.2 Post-study interview
During the post-study interviews, many participants mentioned the
density plots making it possible to compare elements quickly. The
brushing-and-linking function was also repeatedly mentioned to be
“well thought out” and “there when needed”. The design of the inter-
face was positively described as restrained, though some participants
would have liked it to be “more colourful”. Not so well received was
the mouse interaction with the projection; elements were described
as too small to easily select, and many participants preferred lasso
instead of rectangular selections: “I thought I could draw free-form
shapes as well.” (P6). Among the possible improvements suggested
were additional tools for comparing dimensions, such as correlation
analysis, and the ability to zoom and pan the projection.

6.3 Findings: Study 2
The aim of the second study was to better understand how people
would use the prototype when exploring unfamiliar data and how the
different functionalities for data and error representations were used.

6.3.1 Techniques
The sequences per task in the second study shows that more complex
questions also resulted in longer interaction sequences (see Table 2).
Close inspection of how the different functions were used suggested
diverse uses as well as differing preferences among the participants.

P - Projection was used by all participants during all tasks to locate
outliers, analyse distances, and gain detailed information via tooltips.

E - Error display was almost exclusively used in task 4, and a little
bit during free exploration. The participants often (3 out of 4 times)
required help from the moderator to interpret the projection display.

D - Data distribution through the heatmaps was actively used to
compare and interpret clusters and individual elements. The data
distribution as part of the tooltip was used throughout all tasks.

C - Clustering was used moderately by all participants (except P7
who employed it extensively) used it moderately with a tendency
for either 3 or 9 clusters; the latter was the maximum number of
clusters possible. The clusters were often compared with dimensions
in tooltips and analysed with the help of heatmaps.

T - Tooltips with data details were brought up by all participants
throughout all tasks, mainly to see more detailed information for data
points and also in combination with other techniques.

G - Manual groupings were created by several participants espe-
cially in tasks 1, 3 and 4, however, the grouping feature was sometimes
triggered accidentally.

X - Misinterpretation occurred when participants tried to understand
scales of the MDS axes; furthermore, sometimes the error display as
halos and displacements was interpreted falsely.

H - Help by moderator was provided mostly when items could
not be found, questions were not understood or forgotten during task
completion, and techniques were not discovered fully (e.g., correct
distances). Help was mostly sought during tasks 4 and 5.

6.3.2 Observations
While the current functionalities were sufficient to solve the tasks
in the study setting, the amount of sequences and verbal statements
by participants suggest that the current functionality is not sufficient
for hypothesis-led analysis, but rather open exploration. During the
multidimensional comparison tasks with clustering such as task 5, it
seemed that the mental models of the experts differed from the visual
representation. The participants expressed the opinions, that ad-hoc
usage of the visual representation may need a lot of time and would
be inefficient. “It would be better, when the tool supports hypotheses
by the researcher, since it is more goal-orientated.” (P10) However,
during the follow-up interview participants frequently expressed that
with these new representations of data it would be possible to compare
datasets in a more natural ‘narrative’ way beyond mere statistical
impressions. But simultaneously some participants questions whether
the tool in its current form would support a scientific approach: “It is
important to know what is the projection algorithm and what are the
activated dimensions for the clustering.” (P10)



Table 2. Tasks and markers of the interaction sequences during the second study. See Section 6.3.1 for description of functions used.
1. Free explo-
ration.

2. How would
you try to charac-
terise the whisky
type Talisker?

3. In what way are
the whiskies Scapa and
Aberlour different in
their properties?

4. Can you discover whether
the data projections of the
whiskies Oban and Scapa
are correct or with error de-
viation? How do you inter-
pret these visualizations?

5. Can you discover which
parts of the cluster combi-
nations are malty, nutty and
spicy?

P7 P T T D D C D D
C D T C H H C C
H D

C C D T T T D T
D D P P

P T C C C C C C C D
D C T X C C C T T G
C C C C C C H C C T
C T T T T H P P T

E E E E T T E T E E T P P
X T T E E P E T X E P

D C T C D D D C D C D C T
C T C T T C D T D C D C D
D C T C T T C C T C D T T C
D C T T T T D

P8 G X T P G G G D
D X X

P T X T X T X T
D T D D X T

G X P X T G D D X D
X X X X H H D X T T
D

P P H H P X P X H X P E E
H H H H X E G E X H E T
E H T E E

P E P G D H D D C C D D T
C P P X X X T H H H H X H

P9 D D P T T C P T
P E T T D T P D
T G X

D P T X T X P D P G H P P T T G X
G X G X P X D G D D
D H H X T P P X T

H P T E X E X E E D E H T
P T E E E H E H T H E H E
T E E H E E

E T D D C D C T D T T C T T
T C T C C H H C T T T D D X
T D X D D

P10 T T T D P E P G
X C D D T T G G

P P T H H D P C P P P H P T H G T
G H D H T X X

P P T E E X H H H T H E E
E H H E T E H E T E E E T
G X H H E T E T E E T H

E C D C D D C D C D C E D
C D C H T H H D X C D C C
D D C D T D T D T T D T D
E X H H H C H C C C

7 DISCUSSION

Following the idea of probing, our design goals for the visualization of
dimensionality-reduced data were to reveal errors, allow for compar-
isons, and support spatial orientation, all while remaining consistent in
the visual design and interactions. The largely successful completion
of the tasks during the studies suggests that the implemented prototype
generally succeeded in satisfying these aspirations. However, the post-
study interviews revealed a range of specific issues of the prototype
and more general challenges for visualizing dimensionality-reduced
data. In the following, we briefly discuss three points: learnability
and manipulation of projection methods, and the larger potential of
probing for other types of visualization techniques.

Learnability The evaluation suggested specific problems with the
prototype that can be in part be addressed with simple changes: using a
legend to make the dimensional heatmaps clearer, better explaining the
different types of error, and making the option to show error-corrected
distances easier to find. There is a need for more effective mech-
anisms for grasping the concepts behind dimensionality reduction,
recognising the involved errors, and pursuing dimension-related tasks.
A built-in help explaining features of the prototype was something
some participants missed and was then included for the second study.
Something like this seems necessary for a tool that is designed to
be simple to use, as data analysis and visualization are large fields,
and not everyone is an expert in working with dimensionality-reduced
data. But beyond that, there may be an opportunity to use the tool
as an explanatory, didactic device; a tool to explain the basics of
multidimensional scaling to interested practitioners of data analysis,
by helping them analyse their own datasets. For this area the question
is how to also support goal-directed, hypothesis driven research.

Manipulation A related area with great potential for further inves-
tigation is the support of dimension-related tasks as was inquired by
several participants. Some improvements are simple; like the ability to
reorder, group, or annotate dimensions, or to weigh them differently
according to their importance. These types of manipulations relate
to the notion of semantic interaction [8] as a method to adjust the
underlying method for spatialisation. Visualising the differences
between two or more dimensions on the projections space is another
potentially interesting feature, leading up to the possibility of how
to combine correlating dimensions into new ones. Furthermore, our
prototype currently focusses on the process of probing, neglecting
what to do with the results of this process. Viewers should be able
to save their findings and share them with others. When doing so, they
may want to focus on the presentation of their findings, which may
require an entirely different interface.

Probing visualizations Applying the notion of probing to dif-
ferent types of variables and visualization techniques is another im-
portant area with great potential. Currently our design and prototype
only supports scalar variables, but we are already thinking about
what changes need to be made to support categorical variables or
even entirely different types of datasets with different needs. For
example, the visualizations of text corpora that need to deal with
a number of dimensions far bigger than currently supported by the
presented interface. In this context, it may be particularly important
to ‘bubble up’ interesting dimensions when comparing elements, or
think about how to present a big number of differences between
elements. Currently, the interface can only accommodate about a
dozen dimensions and at most a few hundred samples. While the
integration of visualization of projection errors and projected data
prompted favourable responses, it is not clear whether the idea of
probing as an approach to integrate the visualization of data and its
errors has wider applicability in visualization. For many people the
visualization pipeline remains a black-box just as experienced data
analysts may actually not sufficiently comprehend the working of
MDS to confidently put it to use in their work.

8 CONCLUSION

As dimensionality reductions have been gaining popularity for visual
analysis of high-dimensional data, there is a growing need to support
data-related tasks concerned with the interpretation of the clusters and
dimensions, while also enabling the analyst to confidently judge the
quality of the projection. In this paper we introduced the concept of
probing as an approach that integrates these two aspects: exploring
the data and examining the errors. We created a visualization
environment for dimensionality-reduced data that provides a suite
of interaction and visualization techniques especially designed for
probing activities. The results of two brief user studies are promising,
yet also raise specific issues related to the learnability of projection
interfaces as well as directions for future research on the visualiza-
tion of dimensionality-reduced data. Considering growing concerns
in the visualization community about trust [6], rhetoric [11], and
uncertainty [19] probing could be one way to let viewers develop
visualization literacy, empowering them to look beneath the surface of
visualizations. The aim to turn the inner workings outside and disclose
inaccuracies, distortions, and omissions may not just be useful and
necessary for error-prone dimensionality reductions, but also for any
visualization in general. In light of recent studies of the persuasive
power of visualizations [20, 26], we need to develop methods for
interrogating not just the data, but the visualization itself. The concept
of probing can be seen as one step into this direction.
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